

School District of Marshfield Course Syllabus

Course Name: Math 105 – Intermediate Algebra Honors Length of Course: Fall Semester Credit: 1/2

Program Goal:

The School District of Marshfield Mathematics Program will prepare students for college and career in the 21st century by ensuring *all* students learn based on skills and knowledge needed to succeed in post-secondary education/training, career, and life. The 4K through High School Mathematics curriculum is designed to support every student in achieving success. Students will be placed in to the driver's seat. Innovative educators will tailor instruction to student need through engaging learning activities and relevant assessment.

Course Description:

This course is the equivalent of Math 105 – Intermediate Algebra, in the University of Wisconsin system. Although not a college degree credit course, Intermediate Algebra reviews the topics needed to be mastered before taking College Algebra (Math 110), the Mathematics General Education Degree Credit course for most Bachelor degrees. Topics include the real number system, linear equations and inequalities, operations on polynomials and rational expressions, factoring, solutions of quadratic equations, Cartesian coordinates, functions, and related applications. Completion of this course with a C (not a C-) or better qualifies students to take College Algebra (Math 110) for High School Credit in the Spring Semester.

NOTE: This course is only offered in the Fall Semester. All students who sign-up for this course will sit for the UW System Mathematics Placement Exam. Cut scores determine course placement for eligibility to take College Algebra (Math 110) for College Credit in the Spring Semester.

PREREQUISITE: Senior Standing <u>and</u> Completion of Three Credits of High School Mathematics.

Standards:		
Wisconsin Standards for Mathematical Practice (MP)		
MP: 1, 2, 3, 4, 5, 6, 7, 8	 Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others. Model with mathematics. Use appropriate tools strategically. Attend to precision. Look for and make use of structure. Look for and express regularity in repeated reasoning. 	
Wisconsin Standards for Mathematic	s- Number and Quantity	
The Real Number System (N-RN)		
Extend the properties of exponents to rational exponents. N-RN: 1, 2	1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 5 because we want $(5^{1/3})^3 = 5(^{1/3})^3$ to hold, so $(5^{1/3})^3$ must equal 5. 2. Rewrite expressions involving radicals and rational exponents using the properties of exponents.	
Wisconsin Standards for Mathematic	s- Algebra	
Seeing Structure in Expressions (A-SSE) Interpret the structure of expressions. A-SSE: 1a, 1b, 2	 Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as a single entity. <i>For example, interpret P</i>(1+r)ⁿ as the product of P and a factor not depending on P. Use the structure of an expression to identify ways to rewrite it. <i>For example, see x⁴ - y⁴ as (x²)² - (y²)², thus</i> 	

	recognizing it as a difference of squares that can be
	factored as $(x^2 - y^2)(x^2 + y^2)$.
Write expressions in equivalent forms	3. Choose and produce an equivalent form of an
to solve problems.	expression to reveal and explain properties of the quantity
A-SSE: 3a, 3b, 3c	represented by the expression.
	a. Factor a quadratic expression to reveal the zeros
	of the function it defines.
	b. Complete the square in a quadratic expression to
	reveal the maximum or minimum value of the
	function it defines.
	c. Use the properties of exponents to transform
	expressions for exponential functions. For
	example, the expression 1.15 ^t can be rewritten as
	$(1.15^{1/12})^{12t} \approx 1.012^{12t}$ to reveal the approximate
	equivalent monthly interest rate if the annual rate
	is 15%.
Arithmetic with Polynomials and Ration	al Expressions (A-APR)
Perform arithmetic operations on	1. Understand that polynomials form a system analogous
polynomials.	to the integers, namely, they are closed under the
A-APR: 1	operations of addition, subtraction, and multiplication;
	add, subtract, and multiply polynomials.
Understand the relationship between	2. Know and apply the Remainder Theorem: For a
zeros and factors of polynomials.	polynomial $p(x)$ and a number <i>a</i> , the remainder on
A-APR: 2, 3	division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$
	is a factor of $p(x)$.
	3. Identify zeros of polynomials when suitable
	factorizations are available, and use the zeros to construct
	a rough graph of the function defined by the polynomial.
Use polynomial identities to solve	6. Rewrite simple rational expressions in different forms;
problems.	write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$, where $a(x)$,
A-APR: 6	b(x), $q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$
	less than the degree of $b(x)$, using inspection, long
	division, or, for the more complicated examples, a
	computer algebra system.
Rewrite rational expressions.	7. (+)Understand that rational expressions form a system
A-APR: 7	analogous to the rational numbers, closed under addition,
	subtraction, multiplication, and division by a nonzero
	rational expression; add, subtract, multiply, and divide
	rational expressions.
Creating Equations (A-CED)	
Create equations that describe	1. Create equations and inequalities in one variable and
numbers or relationships.	use them to solve problems. Include equations arising
A-CED: 1, 2, 4	from linear and quadratic functions, and simple rational
	and exponential functions.
	2. Create equations in two or more variables to represent
	relationships between quantities; graph equations on
	coordinate axes with labels and scales.
	4. Rearrange formulas to highlight a quantity of interest.
	using the same reasoning as in solving equations. For

	example, rearrange Ohm's law $V = IR$ to highlight	
	resistance R.	
Reasoning with Equations and Inequalities (A-REI)		
Understand solving equations as a	1. Explain each step in solving a simple equation as	
process of reasoning and explain	following from the equality of numbers asserted at the	
the reasoning.	previous step, starting from the assumption that the	
A-REI: 1, 2	original equation has a solution. Construct a viable	
	argument to justify a solution method.	
	2. Solve simple rational and radical equations in one	
	variable, and give examples showing how extraneous	
	solutions may arise.	
Solve equations and inequalities in one	3. Solve linear equations and inequalities in one variable,	
variable.	including equations with coefficients represented by	
A-REI: 3, 4a, 4b	letters.	
	4. Solve quadratic equations in one variable.	
	a. Use the method of completing the square to	
	transform any quadratic equation in x into an	
	equation of the form $(x - p)^2 = q$ that has the same	
	solutions. Derive the quadratic formula from this	
	IOIIII.	
	b. Solve quadratic equations by inspection (e.g., for $r^2 = 40$), taking square roots, completing the	
	x' = 49), taking square roots, completing the	
	square, the quadratic formula and factoring, as	
	Papagnize when the quadratic formula gives	
	accognize when the quadratic formula gives	
	complex solutions and write them as $a \pm bl$ for real numbers a and b	
Solve systems of equations	5. Prove that, given a system of two aquations in two	
A DEL 5 6	5. Flove that, given a system of two equations in two	
A-KEI . 5, 0	variables, replacing one equation by the sum of that	
	with the same solutions	
	6 Solve systems of linear equations exactly and	
	approximately (e.g. with graphs) focusing on pairs of	
	linear equations in two variables	
B enresent and solve equations and	12 Graph the solutions to a linear inequality in two	
inequalities graphically	variables as a half-plane (excluding the boundary in the	
A_REI: 12	case of a strict inequality) and graph the solution set to a	
A-MLI, 12	system of linear inequalities in two variables as the	
	intersection of the corresponding half-planes	
Wissonsin Standards for Mathematic	Functions	
Visconsin Standards for Mathematic	s- runcuons	
Interpreting Functions (F-IF)	1. Understand that a function from one act (called the	
ond use function notation	1. Understand that a function from one set (called the	
E IE, 1, 2	domain) to another set (called the range) assigns to each	
F-IF : 1, 2	fie a function and u is an alament of its domain than ful	
	J is a function and x is an element of its domain, then $f(x)$	
	denotes the output of <i>j</i> corresponding to the input <i>x</i> . The graph of f is the graph of the equation $y = f(y)$	
	graph of <i>j</i> is the graph of the equation $y = f(x)$.	
	2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function	
	nen domains, and interpret statements that use function	
	notation in terms of a context.	

Wisconsin Standards for Mathematics- Geometry		
Congruence (G-CO)		
Experiment with transformations in the	1. Know precise definitions of angle, circle, perpendicular	
plane.	line, parallel line, and line segment, based on the	
G-CO: 1, 2	undefined notions of point, line, distance along a line, and	
	distance around a circular arc.	
	2. Represent transformations in the plane using, e.g.,	
	transparencies and geometry software; describe	
	transformations as functions that take points in the plane	
	as inputs and give other points as outputs. Compare	
	transformations that preserve distance and angle to those	
	that do not (e.g., translation versus horizontal stretch).	
Expressing Geometric Properties with E	quations (G-GPE)	
Translate between the geometric	1. Derive the equation of a circle of given center and	
description and the equation for a conic	radius using the Pythagorean Theorem; complete the	
section.	square to find the center and radius of a circle given by an	
G-GPE: 1	equation.	
Use coordinates to prove simple	Prove the slope criteria for parallel and perpendicular lines	
geometric theorems algebraically.	and use them to solve geometric problems (e.g., find the	
G-GPE: 5	equation of a line parallel or perpendicular to a given line	
	that passes through a given point).	
Wisconsin Standards for Mathematics- Statistics and Probability		
Interpreting Categorical and Quantitative Data (ID)		
Interpret linear models.	7. Interpret the slope (rate of change) and the intercept	
S-ID: 7	(constant term) of a linear model in the context of the data.	

Key Vocabulary	:		
Sets of Real Numbers	Set Notation, and	Intersection and	Cartesian Coordinate
	Interval Notation	Union	system
Linear	Linear Systems of	Quadratic Equations	Polynomials
Equations/Inequalities	Equations/Inequalities		
Rational	Absolute Value	Midpoint Formula	Pythagorean
Expressions/Equations	Equations/Inequalities	and Distance Formula	Theorem
Parallel and	Slope-Intercept Form	Point-Slope Form	Standard Form both
Perpendicular Lines			Linear and Quadratic
Elimination Method	Substitution Method	Cramer's Rule	Factor
Greatest Common	Factoring by	Difference of Squares	Difference of Cubes
Factor	Grouping		
Sum of Cubes	Perfect Square	Completing the	Square Root
	Trinomial	Square	Principle
One Solution	No Solution	Infinitely Many	Extraneous Roots
		Solutions	
Relation	Function	Domain	Range
Composite Functions	One-to-one Functions	Inverse Functions	Exponential
			Functions

Logarithmic	Function Notation	Simplest Radical	
Functions		Form	

Topics/Content Outline- Units and Themes:

Quarter 1:

- Perform Operations with real numbers
- Solve equations and inequalities
- Use Cartesian coordinate system
- Algebraic relations and functions
- Solve systems of linear equations and inequalities

Quarter 2:

- Perform operations with polynomials
- Perform operations on rational expressions and equations
- Solve Radical equations
- Solve quadratic equations
- Apply properties of exponential and logarithmic functions

Primary Resource(s):	
Intermediate Algebra for College	Math XL, Pearson Realize
Students, 7 th Edition	
Prentice Hall	
ISBN: 0-132-38357-8	
© 2007	